Cutting Planes for Multistage Stochastic Integer Programs

نویسندگان

  • Yongpei Guan
  • Shabbir Ahmed
  • George L. Nemhauser
چکیده

This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs.We give a general method for generating cutting planes for multi-stage stochastic integer programs basedon combining inequalities that are valid for the individual scenarios. We apply the method to generatecuts for a stochastic version of a dynamic knapsack problem and to stochastic lot sizing problems. Wegive computational results which show that these new inequalities are very effective in a branch-and-cutalgorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse

We propose an algorithm for multistage stochastic linear programs with recourse where random quantities in different stages are independent. The algorithm approximates successively expected recourse functions by building up valid cutting planes to support these functions from below. In each iteration, for the expected recourse function in each stage, one cutting plane is generated using the dua...

متن کامل

A Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse

We propose an algorithm for multistage stochastic linear programs with recourse where random quantities in di erent stages are independent. The algorithm successively approximates expected recourse functions by building up valid cutting planes to support these functions from below. In each iteration, for the expected recourse function in each stage, one cutting-plane is generated using the dual...

متن کامل

Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctive Programs∗

This article investigates cutting planes for mixed-integer disjunctive programs. In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. For disjunctions arising from binary variables, it is known that these cutting planes are essentially the same as Gomory mixed-integer and mixed-integer rounding cuts. In this article, we investigate ...

متن کامل

Cutting planes for integer programs with general integer variables

We investigate the use of cutting planes for integer programs with general integer variables. We show how cutting planes arising from knapsack inequalities can be generated and lifted as in the case of 0{1 variables. We also explore the use of Gomory's mixed integer cuts. We address both theoretical and computational issues and show how to embed these cutting planes in a branch-and-bound framew...

متن کامل

Cutting planes for the multistage stochastic unit commitment problem

As renewable energy penetration rates continue to increase in power systems worldwide, newchallenges arise for system operators in both regulated and deregulated electricity markets tosolve the security constrained unit commitment problem with intermittent generation (due torenewables) and uncertain load, in order to ensure system reliability and maintain cost effec-tiveness. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2009